
16 The Delphi Magazine Issue 66

Everything Put
Together Falls Apart
This month we look at parsing, compiling
and using regular expressions

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Just like an old Saturday morning
movie serial, last month I delib-

erately left several plot threads
hanging, just to make sure you
renewed your subscriptions and
turned up this month. I’d shown
how to convey a regular expres-
sion as a table of special values, but
hadn’t shown you how to generate
the table. I’d shown you how to
show that a string was part of the
language defined by a regular
expression (‘matching’), but had
not said anything about how to do
the same for a substring in a longer
string (which is what the regular
expression search program, grep,
does). Most of all, I’d shown you
the grammar for the regular
expression syntax, but hadn’t
shown you how to parse a regular
expression to validate it and com-
pile it into a form we could use (the
aforementioned table).

So there’s a lot of ground to
cover this month. Get seated
comfortably and I’ll load up the
first reel.

Learn How To Fall
The first problem we’ll attack is the
one of parsing a given regular
expression string (or regex, for

short). In this process, our objec-
tive is merely to validate a regex
string, to show that the regex fol-
lows the syntax defined by the
grammar. To facilitate this, I’ll
reproduce the grammar from last
month, especially as last month I’d
forgotten to add one regex opera-
tor to the grammar: the . operator
(which stands for a single instance
of any character). Listing 1 shows
the regular expression grammar.
Recall that the ::= operator means
‘is defined as’, | means OR, and
that items in <> are identifiers in
the grammar. So, the first line says
that an <expr> is defined as either a
<term> or as a <term>, followed by a
| character, followed by another
<expr>. The Object Pascal language
is defined the same way in the
Delphi Help file.

Given this grammar definition
and a regex string, how can we read
through the characters in the
string and verify that the regex as a
whole satisfies the grammar? The
easiest way is to write a top-down
parser (sometimes called a recur-
sive descent parser). Providing the
grammar is well defined this is a
fairly easy task, as we’ll see. I
remember some time ago reading a
message on a Delphi newsgroup. It
was from someone who was
complaining that he wanted to see

another example of writing a recur-
sive descent parser, apart from the
standard example of reading and
evaluating an arithmetic expres-
sion. Well, I hope he/she reads this
magazine, because here it comes.

For top-down parsing, each of
the productions in the grammar
becomes a separate routine. (A
production is one of the definitions
in the grammar, that is, one of the
lines that has a ::= operator.) Take
the first production in the gram-
mar, the one for <expr>. Make it
into a method called ParseExpr. (In
the literature, a recursive descent
parser is usually implemented as a
set of interrelated routines.
Because we are all ace object ori-
ented programmers, we’ll write a
class instead. It actually makes
things a lot easier.)

So what does ParseExprdo? Well,
the production states that an
<expr> is either a <term> on its own,
or it’s a <term> followed by the pipe
character (|) followed by another
<expr>. So let’s assume that we
have a method that parses a <term>
called ParseTerm. The first thing
we do either way is to call this
routine to parse a <term>. If, on
return from this routine, the cur-
rent character is the pipe charac-
ter, then we go ahead and call
ourselves recursively (aha! the
recursive bit). That’s all there is to
ParseExpr. Not too difficult, eh?
Listing 2 shows this amazingly
simple routine, as well as the class
declaration.

Let’s leave the implementation
of ParseTerm for last (you’ll see why
in a moment) and proceed with
ParseFactor to parse a <factor>.
Again, the code is simple enough.

<expr> ::= <term> |
<term> '|' <expr> - alternation

<term> ::= <factor> |
<factor><term> - concatenation

<factor> ::= <atom> |
<atom> '?' | - zero or one
<atom> '*' | - zero or more
<atom> '+' - one or more

<atom> ::= <char> |
'.' | - any char
'(' <expr> ') | - parentheses
'[' <charclass> ']' | - normal class
'[^' <charclass> ']' - negated class

<charclass> ::= <charrange> |
<charrange><charclass>

<charrange> ::= <ccchar> |
<ccchar> '-' <ccchar>

<char> ::= <any character except metacharacters> |
'\' <any character at all>

<ccchar> ::= <any character except '-' and ']'> |
'\' <any character at all>

➤ Listing 1: Grammar for regular
expressions.

February 2001 The Delphi Magazine 17

The first thing is to parse an <atom>
by calling ParseAtom, and then
check for one of the three
metacharacters *, + or ?. (A
metacharacter is a character that
has special meaning within the
grammar, for example, the aster-
isk, the plus sign, the parentheses,
and so on. Other characters have
no special meaning.)

The first part of Listing 3 shows
this method. ParseAtom is again
fairly trivial to code: it’s either a
<char> or it’s a period; it’s an open
parenthesis, followed by an <expr>,
followed by the close parenthesis;
it’s an open bracket, followed by a
<charclass>, followed by a close
bracket; or it’s an open bracket, fol-
lowed by a caret, followed by a
<charclass>, followed by a close
bracket. We code it in exactly that
form as shown by the second
method in Listing 3. The other
methods that implement the other

productions are equally as trivial.
Notice that it’s the very lowest
methods that have the actual vali-
dation in them. For example,
ParseAtom will check that a close
parenthesis is present after pars-
ing the open parenthesis and the
<expr>. ParseChar checks that the
current character is not a
metacharacter. And so on, so forth.

All I’ve done for this particular
parser is to write the current gram-
mar item to the console and to
raise an exception if we reach a
point where we can determine
whether the input regex string is
invalid. Neither of these things

type
TaaRegexParser = class
private
FRegexStr : string;
FPosn : PAnsiChar;

protected
procedure rpParseAtom;
procedure rpParseCCChar;
procedure rpParseChar;
procedure rpParseCharClass;
procedure rpParseCharRange;
procedure rpParseExpr;
procedure rpParseFactor;
procedure rpParseTerm;

public
constructor Create(const aRegexStr : string);
destructor Destroy; override;
function Parse(var aErrorPos : integer) : boolean;

end;
procedure TaaRegexParser.rpParseExpr;
begin
rpParseTerm;
if (FPosn^ = '|') then begin
inc(FPosn);
writeln('alternation');
rpParseExpr;

end;
end;

procedure TaaRegexParser.rpParseFactor;
begin
rpParseAtom;
case FPosn^ of
'?' : begin

inc(FPosn);
writeln('zero or one');

end;
'*' : begin

inc(FPosn);
writeln('zero or more');

end;
'+' : begin

inc(FPosn);
writeln('one or more');

end;
end;{case}

end;
procedure TaaRegexParser.rpParseAtom;
begin
case FPosn^ of
'(' : begin

inc(FPosn);
writeln('open paren');
rpParseExpr;
if (FPosn^ <> ')') then
raise Exception.Create(
'Regex error: expecting a closing ‘+
‘parenthesis');

inc(FPosn);
writeln('close paren');

end;
'[' : begin

inc(FPosn);
if (FPosn^ = '^') then begin
inc(FPosn);
writeln('negated char class');
rpParseCharClass;

end else begin
writeln('normal char class');
rpParseCharClass;

end;
inc(FPosn);

end;
'.' : begin

inc(FPosn);
writeln('any character');

end;
else
rpParseChar;

end;{case}

end;
procedure TaaRegexParser.rpParseCCChar;
begin
if (FPosn^ = #0) then
raise Exception.Create('Regex error: expecting a ‘+
‘normal character, found null terminator');

if FPosn^ in [']', '-'] then
raise Exception.Create('Regex error: expecting a ‘+
‘normal character, ie found a metacharacter');

if (FPosn^ = '\') then begin
inc(FPosn);
writeln('escaped ccchar ', FPosn^);
inc(FPosn);

end else begin
writeln('ccchar ', FPosn^);
inc(FPosn);

end;
end;
procedure TaaRegexParser.rpParseChar;
begin
if (FPosn^ = #0) then
raise Exception.Create('Regex error: expecting a ‘+
‘normal character, found null terminator');

if FPosn^ in MetaCharacters then
raise Exception.Create('Regex error: expecting a ‘+
‘normal character, ie found a metacharacter');

if (FPosn^ = '\') then begin
inc(FPosn);
writeln('escaped char ', FPosn^);
inc(FPosn);

end else begin
writeln('char ', FPosn^);
inc(FPosn);

end;
end;
procedure TaaRegexParser.rpParseCharClass;
begin
rpParseCharRange;
if (FPosn^ <> ']') then
rpParseCharClass;

end;
procedure TaaRegexParser.rpParseCharRange;
begin
rpParseCCChar;
if (FPosn^ = '-') then begin
inc(FPosn);
writeln('--range to--');
rpParseCCChar;

end;
end;

➤ Listing 2: The parse <expr>
method and class definition.

➤ Listing 3: Remaining simple
parsing methods in parser
class.

18 The Delphi Magazine Issue 66

would be done in a production
environment, of course: the first
because our goal is to build the
transition table for the regex string
(compile it, if you like), the second
because we shouldn’t use excep-
tions for validation as it’s too ineffi-
cient. The code does show the
structure and design of a simple
top-down parser: you design the
grammar and then convert it into
code in this fairly trivial fashion.

Suddenly, writing a recursive
descent parser doesn’t seem all
that mysterious after all!

The one fly in the ointment is the
ParseTerm method. Compared with
what we’ve just done, it’s a little
more complicated. The problem is
that the production says that a
<term> is either a <factor> or a
<factor> followed by another
<term> (that is, concatenation).
There is no operator that links the
two, such as the plus sign. If there
were, we could easily write
ParseTerm in the same manner as
all the other ParseXxx methods.
However, since there is no meta-
character for concatenation, we
have to use another trick.

Consider the problem here. Sup-
pose we were parsing the regular
expression ab. We would parse it as
an <expr>, which means parsing it
as a <term>, then a <factor>, then
an <atom>, then a <char>. That takes
care of the a part. We go back up
the grammar until we reach <term>
again, which says that after the
first <factor> we can have another
<term>. Proceeding down the pro-
ductions again, we parse the b as a
<char> again, and we’re done.

Sounds simple enough, so
where’s the problem? Do the same
for (a). This time we go down the
productions until we reach the
point where it says that an <atom>
could consist of a (, followed by an
<expr>, followed by a). So the (is
taken care of and we start over at
the top of the grammar parsing an
<expr>. Wander down again:
<expr>, then <term>, then <factor>,
then <atom>, then <char> and that
takes care of the a. On the way up
again, we encounter the alternative
for the <term> production. So, why
don’t we take the alternative this
time and try and parse a concate-

nation? Well, duh, because this
time the current character is a). In
the first example we decided to
parse a concatenation because the
current character was a b and this
time we don’t because the current
character is a). Do you see the
point I’m trying to make here? We
take a quick peek at the current
character before deciding whether
to parse another concatenated
<term> or not. If it could be counted
as the start of another <atom> then
we go ahead and parse it as such. If
not, we assume that someone else
(that is, a caller method) will do
something with it and that there is
no concatenation.

We are, at this point, going to
have to ‘break the grammar’ to see
what to do next. We are going to
have to assume that, if there is con-
catenation, the current character
will serve as the starting character
for an <atom>. In other words, if the
current character is a ., a (, a [, or
an ordinary character, we shall
parse another <term>. If not, we
assume there is no concatenation
and exit the ParseTerm method. We
are using the information for the
<atom> production, a ‘lower’ pro-
duction, to determine what to do
about the <term> production, a
‘higher’ production. Again, it bears
repeating that this is only neces-
sary because we don’t have a con-
catenation metacharacter.

Listing 4 shows the resulting
ParseTerm method.

Run That Body Down
So, at this point in the game, we
have seen how to parse a regular

expression by taking its grammar
definition and doing some fairly
trivial conversion steps to imple-
ment it in code. Now we need to
look at the next step: generating
the transition table for the non-
deterministic finite automaton
(NFA) that represents the regular
expression; that is, compiling it.

Since we don’t know beforehand
how big the transition table is
going to be, we shall use a TList to
hold it. Doing so means that we can
take advantage of its growing capa-
bilities and don’t have to worry
about predefining the table’s size
and getting it wrong. For effi-
ciency’s sake, we shall preset the
list’s capacity to 64 elements: this
will avoid too much growing when
parsing simple regex strings.

Let’s take this slowly. We shall
use last month’s figures on con-
structing NFA diagrams as our
guide, which I’ve reproduced as
Figure 1.

The simplest case is the expres-
sion that recognizes a single char-
acter. As you see from the first
image in Figure 1, we need a start
state, which will recognize the
character, and it will have a single
link to the end state, we’ll need one
of those too. We’ll write a simple
routine that will create a new state
(as a record) and append it to our
transition table. Listing 5 shows
this simple method: as you can
see, it takes in a match type, a char-
acter, a pointer to a character

procedure TaaRegexParser.rpParseTerm;
begin
rpParseFactor;
if (FPosn^ = '(') or (FPosn^ = '[') or (FPosn^ = '.') or
((FPosn^ <> #0) and not (FPosn^ in MetaCharacters)) then
rpParseTerm;

end;
function TaaRegexParser.Parse(var aErrorPos : integer) : boolean;
begin
Result := true;
aErrorPos := 0;
FPosn := PAnsiChar(FRegexStr);
try
rpParseExpr;
if (FPosn^ <> #0) then begin
Result := false;
aErrorPos := FPosn - PAnsiChar(FRegexStr) + 1;

end;
except
on E:Exception do begin
Result := false;
aErrorPos := FPosn - PAnsiChar(FRegexStr) + 1;

end;
end;

end;

➤ Listing 4: The parse <term>
method and the interfaced
Parse method.

20 The Delphi Magazine Issue 66

class, and two links to other states.
Not all of these parameters will be
required for every state we want to
create of course, but it makes it
easier to have one method that can
create any type of state record
than a whole bunch of them, one
for each type of state we may need.

From the figure it seems as if we
need to create two new states for
this simple character recognizer.
Actually, we can get away with only
creating one, the start state, and
assume that the end state is the
next state to be added to the list.
We leave it as a ‘virtual’ end state. If
we do this with every parsing rou-
tine, we may be able to get away
with making the end state equal to
the start state of another sub-
expression. Let’s see how we do;
from now on all parsing routines
will return their start state, and
we’ll assume that the end state, if
it really existed, would be the next
state to be added to the transition
table.

From Listing 5,
if we pass the spe-
cial state number
NewFinal State as
a next state
number, you can
see that we actu-
ally set the link to
the index of the
next item to be
added to the tran-
sition table. This
item doesn’t exist
yet, of course, but
we’re assuming
that it will or that
something else
will come along
and patch a new
link in.

Anyway, Listing
6 shows the pars-
ing method to recognize a single
character. Notice how we’ve
reengineered the original charac-
ter parsing method. The first thing
is that we don’t raise any excep-
tions on errors any more, instead
we return a special state number:
ErrorState. We also track the error

code for any error that occurred. If
there were an error, we would add
a new state to the transition table
and return it as the function result.
This is, of course, the start state for
this expression.

That was easy enough, so let’s
look at another, more complex,
parsing method: the one that
parses an atom. The first case, the
parenthesized expression, is
pretty much the same as before:
we don’t need to add any states for
this. The second case, the charac-
ter class or the negated one, is defi-
nitely one that needs a new state
machine. We parse the character
class as before (by treating it as a
set of ranges, each of which can be
a single character or two charac-
ters separated by a dash). This
time, however, we must record the
characters in the class. We use a
set of characters allocated on the
heap for this purpose. The final
step is to add a new state to the
transition table that recognizes
this character class, much as we
did for the character recognizer.
The final case, apart from the
single character we’ve already dis-
cussed, is the state machine for the
‘any character’ operator, the
period. This is pretty simple:
create a new state that matches
any character. The complete

function TaaRegexCompiler.rcAddState(aMatchType : TaaNFAMatchType; aChar : char;
aCharClass : PaaCharSet; aNextState1: integer; aNextState2: integer) : integer;

var
StateData : PaaNFAState;

begin
{create the new state record}
New(StateData);
{set up the fields in the state record}
if (aNextState1 = NewFinalState) then
StateData^.sdNextState1 := succ(FTable.Count)

else
StateData^.sdNextState1 := aNextState1;

StateData^.sdNextState2 := aNextState2;
StateData^.sdMatchType := aMatchType;
if (aMatchType = mtChar) then
StateData^.sdChar := aChar

else if (aMatchType = mtClass) or (aMatchType = mtNegClass) then
StateData^.sdClass := aCharClass;

{add the new state}
Result := FTable.Count;
FTable.Add(StateData);

end;

➤ Listing 6: Creating the state machine for a single character.

function TaaRegexCompiler.rcParseChar : integer;
begin
{if we hit the end of the string, it's an error}
if (FPosn^ = #0) then begin
Result := ErrorState;
FErrorCode := recSuddenEnd;
Exit;

end;
{if the current char is one of the metacharacters, it's an error}
if FPosn^ in MetaCharacters then begin
Result := ErrorState;
FErrorCode := recMetaChar;
Exit;

end;
{otherwise add a state for the character}
{..if it's an escaped character: get the next character instead}
if (FPosn^ = '\') then
inc(FPosn);

Result := rcAddState(mtChar, FPosn^, nil, NewFinalState, UnusedState);
inc(FPosn);

end;

➤ Listing 5: Adding a state
record to the transition table.

match any char:

match given char:

concatentation:

? operator:

alternation:

* operator:

+ operator:

match class:

x

.

[class]

regex 1 regex 2

regex 1

regex 2

ε

ε

regex

ε

regex

ε

ε

regex

ε

ε

ε

ε

➤ Figure 1: Constructing an NFA
from a regular expression.

February 2001 The Delphi Magazine 21

listing for the atom parser is shown
in Listing 7. Again, the start state
for these expressions is returned
as the function result and the end
state is the virtual end state.

We seem to be going great guns
here but, to be honest, none of it so
far is difficult. Let’s attack a more
challenging state machine now:
the alternation operator, |.

So far we’ve been creating states
without any reference to each
other, but if you look at the NFA
construction diagram for the OR
operator, you’ll see that we need to
finally do some joining up, à la
Lego. We need to save the start
states for each subexpression. We
need to create a new start state
that will have no-cost links to each

of these two start states. The final
state of the first subexpression
must be linked to the final state of
the second, which then becomes
the final state of the alternation
expression.

But hold on there. The final state
for the first expression does not
exist, remember? So we’ll have to
create one. But if we create one,
won’t it mess up another state
machine since we’ll then have one
or more states pointing to a state
that they’re not supposed to? Not if
we’re careful.

The first thing we must do, of
course, is to parse the initial
<term>. We’ll get back the start
state (so we save it in a variable)
and we know that the final state is
the virtual end state just beyond
the end of the list. If the next char-
acter is a | then we know that we’re

parsing an alternation clause and
that we should be parsing another
<expr>. It’s now that we have to
take things carefully. The first
thing we do is to create a state for
the end state of that initial <term>.
We don’t care at present where its
links point, we’ll patch that up in a
moment. Creating this end state
now also means that whichever
states in the <term> point to the vir-
tual end state will in fact point to
the state we just made real. Now
we shall create the alternation
start state. We know one of the
links, it’s to the initial <term>, but
we don’t know the other yet; after
all, we haven’t parsed the second
<expr> yet. Now we can parse the
second <expr>. We’ll get back a

function TaaRegexCompiler.rcParseExpr : integer;
var
StartState1 : integer;
StartState2 : integer;
EndState1 : integer;
OverallStartState : integer;

begin
{assume the worst}
Result := ErrorState;
{parse an initial term}
StartState1 := rcParseTerm;
if (StartState1 = ErrorState) then
Exit;

{if the current character is *not* a pipe character, no
alternation is present so return the start state of the
initial term as our start state}

if (FPosn^ <> '|') then
Result := StartState1

{otherwise, we need to parse another expr and join the two
together in the transition table}

else begin
{advance past the pipe}
inc(FPosn);
{the initial term's end state does not exist yet

(although there is a state in the term that points to
it), so create it}

EndState1 := rcAddState(mtNone, #0, nil, UnusedState,
UnusedState);

{for the OR construction we need a new initial state: it
will point to the initial term and the second
just-about-to-be-parsed expr}

OverallStartState := rcAddState(mtNone, #0, nil,
UnusedState, UnusedState);

{parse another expr}
StartState2 := rcParseExpr;
if (StartState2 = ErrorState) then
Exit;

{alter the state state for the overall expr so that the
second link points to the start of the second expr}

Result := rcSetState(OverallStartState, StartState1,
StartState2);

{now set the end state for the initial term to point to
the final end state for the second expr and the
overall expr}

rcSetState(EndState1, FTable.Count, UnusedState);
end;

end;

function TaaRegexCompiler.rcParseAtom : integer;
var
MatchType : TaaNFAMatchType;
CharClass : PaaCharSet;

begin
case FPosn^ of
'(' :
begin
{move past the open parenthesis}
inc(FPosn);
{parse a complete regex between the parentheses}
Result := rcParseExpr;
if (Result = ErrorState) then
Exit;

{if the current character is not a close
parenthesis, there's an error}

if (FPosn^ <> ')') then begin
FErrorCode := recNoCloseParen;
Result := ErrorState;
Exit;

end;
{move past the close parenthesis}
inc(FPosn);

end;
'[' :
begin
{move past the open square bracket}
inc(FPosn);
{if the first character in the class is a '^' then
the class if negated, otherwise it's a normal one}

if (FPosn^ = '^') then begin
inc(FPosn);
MatchType := mtNegClass;

end else begin

MatchType := mtClass;
end;
{allocate the class character set and parse the
character class; this will return either with an
error, or when the closing square bracket is
encountered}

New(CharClass);
CharClass^ := [];
if not rcParseCharClass(CharClass) then begin
Dispose(CharClass);
Result := ErrorState;
Exit;

end;
{move past the closing square bracket}
inc(FPosn);
{add a new state for the character class}
Result := rcAddState(MatchType, #0, CharClass,
NewFinalState, UnusedState);

end;
'.' :
begin
{move past the period metacharacter}
inc(FPosn);
{add a new state for the 'any character' token}
Result := rcAddState(mtAnyChar, #0, nil,
NewFinalState, UnusedState);

end;
else
{otherwise parse a single character}
Result := rcParseChar;

end;{case}
end;

➤ Listing 7: Creating the state
machine for an <atom>.

➤ Listing 8: Creating the state
machine for an <expr>.

22 The Delphi Magazine Issue 66

start state that we use to patch up
the second link in the alternation
start state. The new virtual end
state can be used to link up from
the initial <term>’s end state.

And that’s it! After all these she-
nanigans, we had to create two new
states (the first being the start
state for the alternation, the
second being the end state for the
initial <term>), and we were careful
enough so that the virtual end state
of the second <expr> was the vir-
tual end state of the overall alterna-
tion. Listing 8 shows this bit of
intricacy (notice I wrote another
method to help out that sets the
links for a state after it was
created).

Take Me To The Mardi Gras
Having seen this particular con-
struction, creating the state
machines for the three closures
(the *, + and ? operators) is equally
simple, providing we are careful
about the order in which we create
the states. Follow along in Listing 9.

For the zero or one closure (?
operator), we need to create the
end state for the atom’s expression
to which we’re applying the opera-
tor, and we need to create a start
state for the overall state machine.
These new states are linked up as
shown in Figure 1.

For the zero or more closure (*
operator), it’s even easier: we just
need to create the end state for the
atom. This then becomes the start
state for the overall expression.

The virtual end state is the end
state for the expression.

For the one or more closure (+
operator), create the end state for
the atom and link it to the start
state for the atom (which is also
the start state for the expression).
The virtual end state is again the
end state for the expression.

So, what’s left? Our old friend,
concatenation, that’s what. It looks
easy in Figure 1: the end state for
the first regex becomes the start
state for the second and, bingo,
they’re linked. In practice, it’s not
quite so easy. The end state for the
first expression is the virtual end
state, and there’s no guarantee
that this will be equal to the start
state of the next expression (in
which case, they would be auto-
matically linked). No, there’s noth-
ing for it but to create the end state
for the first expression and link it
to the second’s start state. Listing
10 shows the final piece of the
jigsaw, including the creation of
the terminal state.

So, now we have it: we can parse
a regular expression and build up
a transition table that implements
the NFA for that regular
expression.

Hobo’s Blues
Once I got to this point in my
article, I felt some dissatisfaction
with the code. Why? Well, mainly it
was because of the problem of
adding that extra state to solve the
concatenation problem. If you
recall, we had to do that so that the
first expression could be linked to
the second. We could not be sure

that the number of the second
expression’s start state was equal
to the number of the first expres-
sion’s end state. Essentially we
added a ‘do-nothing’ state
consisting of a single no-cost move
to another state. When we use the
transition table to match a string,
using the code I presented last
month, we would then have a
whole bunch of useless pushes of
these ‘do nothing’ states onto our
deque; by ‘useless’ I mean they
really serve no purpose since,
once popped, all they would do is
cause another state to be pushed.
So I thought about getting rid of
them as an optimization measure.

Initially, I was concerned about
deleting state records from the
transition table and messing up all
the various transitions between
states. I’d even started thinking
about having a linked list structure
for the transition table. Then it
became clear: leave the do-nothing
states where they were and just
skip over them. In the end, imple-
menting this optimization turned
out to be remarkably easy. I visited
each state record in the transition
table. For each of these records I
checked to see whether the first
next state was a do-nothing state
(that is, a no matching state with a
single no-cost move). If so, I’d
replace the link to the do-nothing
state with the do-nothing state’s
next link. Repeat this process for a
given state until the first next state
is no longer a do-nothing state. If
the state’s second next state is in
use, do the same for that. Listing 11
shows this routine. Notice that the

function TaaRegexCompiler.rcParseFactor : integer;
var
StartStateAtom : integer;
EndStateAtom : integer;

begin
{assume the worst}
Result := ErrorState;
{first parse an atom}
StartStateAtom := rcParseAtom;
if (StartStateAtom = ErrorState) then
Exit;

{check for a closure operator}
case FPosn^ of
'?' : begin

{move past the ? operator}
inc(FPosn);
{the atom's end state doesn't exist yet, so
create one}

EndStateAtom := rcAddState(mtNone, #0, nil,
UnusedState, UnusedState);

{create a new start state for the overall regex}
Result := rcAddState(mtNone, #0, nil,
StartStateAtom, EndStateAtom);

{make sure the new end state points to the next
unused state}

rcSetState(EndStateAtom, FTable.Count,

UnusedState);
end;

'*' : begin
{move past the * operator}
inc(FPosn);
{the atom's end state doesn't exist yet, so
create one; it'll be the start of the overall
regex subexpression}

Result := rcAddState(mtNone, #0, nil,
NewFinalState, StartStateAtom);

end;
'+' : begin

{move past the + operator}
inc(FPosn);
{the atom's end state doesn't exist yet, so
create one}

rcAddState(mtNone, #0, nil, NewFinalState,
StartStateAtom);

{the start of the overall regex subexpression
will be the atom's start state}

Result := StartStateAtom;
end;

else
Result := StartStateAtom;

end;{case}
end;

➤ Listing 9: Creating the state
machine for a <factor>.

24 The Delphi Magazine Issue 66

final part of the routine is not
strictly necessary (the part that
sets the do-nothing states to ‘un-
used’) but it makes it easier for
assertion code to be inserted into
the string matching method, these
states should not be reached.

Was A Sunny Day
Now that we can create a transition
table from a regular expression, we
can use the code from last month
to see whether an input string
matches the regular expression
exactly. One of the things we would
like to do, however, is not match
the entire string to the regular
expression but to only match part
of the string and to obtain the posi-
tion of that matching substring.
There are a couple of things we
need to do to enable this particular
functionality.

The first of these is to recognize
that sometimes we would like to
match the whole string. We there-
fore introduce two new regex oper-
ators to enable us to do just that:
the anchor operators ^ and $. The
caret means that the matching
must occur from the beginning of
the string. The dollar sign means
that the matching must occur all
the way to the end of the string.
Thus, for example, the regular
expression ^function means
‘match the word function at the
beginning of the string,’ whereas
^end.$ means ‘the entire string
should just consist of the charac-
ters e, n, d and the full stop. No
spaces, no other characters’. The ^
and $ can only appear at the start
and at the end of the regular
expression respectively; they
cannot occur anywhere else within
the regex.

This entails a change to our
grammar: not too drastic but, as
we’ve seen, codifying the grammar

properly makes writing the code
much easier. The new rule is
shown in Listing 12, together with
the relevant parsing method. The
interfaced Parse method is
changed to call this method
instead of the original, of course.

We can now change the string
matching code from the previous
article to match substrings as well
as complete strings. If the regex
starts with a ^ then we just try and
match the entire string. If not, then
we try and match each of the
substrings formed from the origi-
nal string. This is simple enough:
we change the matching code to
accept not only the string itself,
but also a starting position. The
initial routine in Listing 13 shows
the interfaced method for match-
ing a string. As you can see,
depending on the presence of the
start anchor, we either call the

function TaaRegexCompiler.rcParseTerm : integer;
var
StartState2 : integer;
EndState1 : integer;

begin
{parse an initial factor, the state number returned will
also be our return state number}

Result := rcParseFactor;
if (Result = ErrorState) then
Exit;

if (FPosn^ = '(') or (FPosn^ = '[') or (FPosn^ = '.') or
((FPosn^ <> #0) and not (FPosn^ in MetaCharacters))

then begin
{initial factor's end state doesn’t exist yet
(although there is a state in the term that points to
it), so create it}

EndState1 := rcAddState(mtNone, #0, nil, UnusedState,
UnusedState);

{parse another term}
StartState2 := rcParseTerm;
if (StartState2 = ErrorState) then begin
Result := ErrorState;
Exit;

end;
{join the first factor to the second term}
rcSetState(EndState1, StartState2, UnusedState);

end;
end;
function TaaRegexCompiler.Parse(var aErrorPos : integer;
var aErrorCode: TaaRegexError) : boolean;

begin
rcClear; {clear the current transition table}
{empty regex strings are not allowed}
if (FRegexStr = '') then begin
Result := false;
aErrorPos := 1;
aErrorCode := recSuddenEnd;
Exit;

end;
{parse the regex string}
FPosn := PAnsiChar(FRegexStr);
FStartState := rcParseExpr;
{if error occurred or we're not at end of regex string,
clear transition table, return false and error position}
if (FStartState = ErrorState) or (FPosn^ <> #0) then begin
if (FStartState <> ErrorState) and (FPosn^ <> #0) then
FErrorCode := recExtraChars;

rcClear;
Result := false;
aErrorPos := succ(FPosn - PAnsiChar(FRegexStr));
aErrorCode := FErrorCode;

end else begin
{otherwise add a terminal state, optimize, return true}
rcAddState(mtTerminal, #0, nil, UnusedState,
UnusedState);

Result := true;
aErrorPos := 0;
aErrorCode := recNone;

end;
end;

➤ Listing 10: Creating the
<term> state machine and the
interfaced calling method.

procedure TaaRegexCompiler.rcLevel1Optimize;
var
i : integer;
Walker : PaaNFAState;

begin
{cycle through all state records, except for last one}
for i := 0 to (FTable.Count - 2) do begin
{get this state}
with PaaNFAState(FTable.List^[i])^ do begin
{walk the chain pointed to by the first next state,
unlinking the states that are simple single no-cost
moves}

Walker := PaaNFAState(FTable.List^[sdNextState1]);
while (Walker^.sdMatchType = mtNone) and
(Walker^.sdNextState2 = UnusedState) do begin
sdNextState1 := Walker^.sdNextState1;
Walker := PaaNFAState(FTable.List^[sdNextState1]);

end;
{walk the chain pointed to by the first next state,
unlinking the states that are simple single no-cost
moves}

if (sdNextState2 <> UnusedState) then begin
Walker := PaaNFAState(FTable.List^[sdNextState2]);
while (Walker^.sdMatchType = mtNone) and

(Walker^.sdNextState2 = UnusedState) do begin
sdNextState2 := Walker^.sdNextState1;
Walker := PaaNFAState(FTable.List^[sdNextState2]);

end;
end;

end;
end;
{cycle through all the state records, except for the last
one, marking unused ones--not strictly necessary but
good for debugging}

for i := 0 to (FTable.Count - 2) do begin
with PaaNFAState(FTable.List^[i])^ do begin
if (sdMatchType = mtNone) and

(sdNextState2 = UnusedState) then
sdMatchType := mtUnused;

end;
end;

end;

➤ Listing 11: Optimizing a
transition table.

February 2001 The Delphi Magazine 25

workhorse method to match the
entire string, or we go through the
original string trying a match at
every position.

What about the $operator, then?
Here, we need to change the
matching code. The method in List-
ing 14 shows the modified match-
ing code. How has this changed
from before? For a start we are now
passing in the starting position in
the string. Also we have an explicit
terminating state this time (last
time, it was merely a no-match
state with no next state links). Take
a look at the case switch clause for
this terminating state. We only
accept the terminating state as
indicating a match if the regular
expression had no ending anchor,
or if we managed to reach the end
of the string. If either of these con-
ditions were not met, the terminat-
ing state would be ignored.

What else? All the code I’ve pre-
sented so far is case-sensitive. If
the regex has a subexpression
matching an a, then only a will
match it, A will not. A simple
change then is to allow for case-
insensitive regular expression
matching. This is not too arduous a
task, but has a hidden catch that
could cause a stumbling block. An
initial stab at this would be to
uppercase the regular expression
string just before parsing and com-
piling it, and to uppercase the
match string just before attempt-
ing to match it against the com-
piled regex. For the vast majority of
regexes this would work perfectly

well. However, consider the regex
[A-z]+. If we uppercased this regu-
lar expression prior to parsing it
we would be parsing [A-Z]+, a very
different animal than before.
(Why? Well there are punctuation
marks in the range A-z, but there
aren’t in the range A-Z.)

A better strategy would be to
uppercase individual characters
as we came across them in the
parsing process. When we popu-
late a character set to represent a
character class, we not only add all
the characters in the original
range, we add the uppercased ver-
sions of them as well. For the
match string, we can uppercase let-
ters as we come across them, or we
could uppercase the whole string;
it doesn’t matter much.

On this month’s disk, you will
find the complete regular expres-
sion compiler code to parse a regu-
lar expression, to build the
transition table, to optimize the
table, and finally to match given
strings to the regular expression.

Something So Right
If you take a look at this source,
you’ll see a lot more code than has
been printed in this article. Not
extra functionality, mind you,
but debugging code. A couple of
months ago I read Debugging Appli-
cations by John Robbins and much
of what he said made a lot of sense
to me, especially with regard to
assertions and tracing code help-
ing you debug. His view was that
assertions were good to have, not
only during the original coding
process, but also afterwards, way
afterwards when you’ve forgotten
how the code works. Assertions
are like active comments in a way:
they encode your thought pro-
cesses about how the code should
work, what invariants you’re
assuming, the invalid values you
can’t accept for parameters, and
so on.

Tracing is a different kettle of
fish. Originally I wrote the regex
parser class before the compiler
class. In running the parser class,
it was obvious if something went
wrong: I could see the debug print
on the screen. For the compiler
class, I took the parser and
removed the writelns to the con-
sole window and replaced them
with the code that created state
records for the transition table.
Needless to say something went
wrong during development, and I
had to put equivalents back in to
help me debug. Better still this
time, I wrote them to a log file that I
could peruse at leisure. I also
added code that dumped the tran-
sition table to the same log file on a

<anchorexpr> ::= <expr> |
'^' <expr> |
<expr> '$' |
'^' <expr> '$'

function TaaRegexCompiler.rcParseAnchorExpr : integer;
begin
{check for an initial '^'}
if (FPosn^ = '^') then begin
FAnchorStart := true;
inc(FPosn);

end;
{parse an expression}
Result := rcParseExpr;
{if we were successful, check for the final '$'}
if (Result <> ErrorState) then begin
if (FPosn^ = '$') then begin
FAnchorEnd := true;
inc(FPosn);

end;
end;

end;

➤ Listing 12: Parsing the anchors.

➤ Listing 13: The interfaced
method for matching a string.

function TaaRegexCompiler.MatchString(const S : string) : integer;
var
i : integer;
ErrorPos : integer;
ErrorCode : TaaRegexError;

begin
{try and see if the string matches (empty strings don't)}
Result := 0;
if (S <> '') then
{if the regex specified a start anchor, then we only need to check
the string starting at the first position}
if FAnchorStart then begin
if rcMatchSubString(S, 1) then
Result := 1;

end else begin
{otherwise we try and match the string at every position and
return at the first success}
for i := 1 to length(S) do
if rcMatchSubString(S, i) then begin
Result := i;
Break;

end;
end;

end;

26 The Delphi Magazine Issue 66

successful parse. This extra code
is called tracing code. The code
dumps information to the screen
or a file, detailing various values of
importance, tracing the code flow.
It’s well worth keeping it in there,
isolated by a compiler define, for
that point in the future when some-
thing goes wrong and you need it
again.

Needless to say I shall be making
sure that my future coding has
more of this kind of thing, and I
encourage you to experiment and
do the same.

Before I sign off, I’ve an extra
comment to make about the
matching process that I’ve been
concentrating on over these last
couple of articles. Those of you
who’ve used regexes for a while
will be used to thinking about the
greediness of the algorithm. Greed-
iness? Let’s explain it like this.
Suppose you are using the regex
[a-z]*a, that is, zero or more
letters followed by an a. The string
you wanted to test for matching is
banana. Would you match ba, bana,

or the whole word? Does it actually
matter?

In one sense, no, it doesn’t
matter in the least. All you get is an
indication that the string matched,
which (generally) is all you
wanted. In another sense, maybe it
does. Suppose you were writing a
regex search and replace. Here it
would matter if you were talking
about matching ba, bana or banana.
The normal algorithms imple-
mented by regex searchers (like
grep, or the one embedded in the
search dialog in the Delphi IDE) are
called ‘greedy’: they will try and
find the longest string that
matches. The algorithm greedily
gobbles up letters until it finds the
longest match. This is the classic
backtracking algorithm I described
last week. Our algorithm, on the
other hand, is not greedy: it
favours speed over finding the lon-
gest match. It will terminate as
soon as it identifies a path from the
start state to the end state. In our
example, it will terminate after
finding ba, preferring to report a

success after this short string
instead of waiting to see if it could
find a longer one. Altering the code
so that it becomes greedy is just a
matter of calculating all possible
matches and selecting the longest.
However, doing that is liable to
make things very slow.

That’s all for now. I hope you
enjoyed these two forays into
automata and string searching
through regular expressions.

Julian Bucknall exhorts you not
to call him Al, Paul, or Simon.
He can be reached at julianb@
turbopower.com

The code that accompanies this
article is freeware and can be used
as-is in your own applications.
© Julian M Bucknall, 2001

function TaaRegexCompiler.rcMatchSubString(const S : string;
StartPosn : integer) : boolean;

var
Ch : char;
State : integer;
Deque : TaaIntDeque;
StrInx : integer;

begin
{assume we fail to match}
Result := false;
{create the deque}
Deque := TaaIntDeque.Create(64);
try
{enqueue the special value to start scanning}
Deque.Enqueue(MustScan);
{enqueue the first state}
Deque.Enqueue(FStartState);
{prepare the string index}
StrInx := StartPosn - 1;
{loop until the deque is empty or we run out of string}
while (StrInx <= length(S)) and not Deque.IsEmpty
do begin
{pop the top state from the deque}
State := Deque.Pop;
{process the "must scan" state first}
if (State = MustScan) then begin
if not Deque.IsEmpty then begin
inc(StrInx);
if (StrInx <= length(S)) then begin
Ch := S[StrInx];
Deque.Enqueue(MustScan);

end;
end;

end else with PaaNFAState(FTable.List^[State])^
do begin
{otherwise, process the state}
case sdMatchType of
mtNone :
begin
Deque.Push(sdNextState2);
Deque.Push(sdNextState1);

end;
mtAnyChar :
begin
Deque.Enqueue(sdNextState1);

end;
mtChar :
begin
if (Ch = sdChar) then
Deque.Enqueue(sdNextState1);

end;

mtClass :
begin
if (Ch in sdClass^) then
Deque.Enqueue(sdNextState1);

end;
mtNegClass :
begin
if not (Ch in sdClass^) then
Deque.Enqueue(sdNextState1);

end;
mtTerminal :
begin
if (not FAnchorEnd) or (StrInx > length(S))
then begin
Result := true;
Exit;

end;
end;

mtUnused :
begin
Assert(false, 'unused states shouldn''t be
seen');

end;
end;

end;
end;
while not Deque.IsEmpty do begin
State := Deque.Pop;
with PaaNFAState(FTable.List^[State])^ do begin
case sdMatchType of
mtNone :
begin
Deque.Push(sdNextState2);
Deque.Push(sdNextState1);

end;
mtTerminal :
begin
if (not FAnchorEnd) or (StrInx > length(S))
then begin
Result := true;
Exit;

end;
end;

end;{case}
end;

end;
finally
Deque.Free;

end;
end;

➤ Listing 14: The final code for
matching a substring.

	Learn How To Fall
	Run That Body Down
	Take Me To The Mardi Gras
	Hobo’s Blues
	Was A Sunny Day
	Something So Right

